Exploring Image Specific Structured Loss for Image Annotation with Incomplete Labelling

نویسندگان

  • Xing Xu
  • Atsushi Shimada
  • Rin-ichiro Taniguchi
چکیده

In this paper, we address the problem of image annotation with incomplete labelling, where the multiple objects in each training image are not fully labeled. The conventional one-versus-all SVM (OVASVM) that performs fairly well on full labelling decays drastically under the incomplete setting. Recently, structured learning method termed OVA-SSVM is proposed to boost the performance of OVA-SVM by modeling the structured associations of labels and show efficiency under incomplete setting. The OVA-SSVM assumes that each training sample includes a single label and adopts an loss measure of classification style that as long as one of the predicted label is correct, the overall prediction should be considered correct. However, this may not be appropriate for the multi-label annotation task. In this paper, we extend the OVA-SSVM method to the multi-label situation and design a novel image specific structured loss measure to account for the dependencies between predicted labels relying on the image-label associations. Then we develop an efficient optimization algorithm to learn the model parameters. Finally, we present extensive empirical results on two benchmark datasets with various degree of incompletion, and show that proposed method outperforms OVA-SSVM and achieves competitive performance compared with other state-of-the-art methods which are also designed for the issue of incomplete labelling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

Tags Re-ranking Using Multi-level Features in Automatic Image Annotation

Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...

متن کامل

Multi-utility Learning: Structured-Output Learning with Multiple Annotation-Specific Loss Functions

Structured-output learning is a challenging problem; particularly so because of the difficulty in obtaining large datasets of fully labelled instances for training. In this paper we try to overcome this difficulty by presenting a multi-utility learning framework for structured prediction that can learn from training instances with different forms of supervision. We propose a unified technique f...

متن کامل

Scalable Image Annotation by Summarizing Training Samples into Labeled Prototypes

By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014